Thread: Magnetic Diode
View Single Post
 
Old 11-25-2018, 06:29 AM
bistander bistander is online now
Gold Member
 
Join Date: Apr 2015
Posts: 1,699
A couple better articles w diagrams.

Looks like these are copyright sensitive so I'm not pasting them in here. This first one shows an apparatus which looks reproducible by the likes of a home experimenter.

https://physics.aps.org/synopsis-for...ett.121.213903

Then there is this article which they want $ for or maybe will send it to a library upon request.

https://journals.aps.org/prl/abstrac...ett.121.213903

Regards,

bi

{edit}

Another one.

Quote:


First diode for magnetic fields
23-Nov-2018


full-screen
Luis Veloso
When the left coil is energized, the magnetic field reaches the right coil (top). When the right coil is energized, the magnetic field does not reach the left one (bottom).

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the core of any electronic component, being one of the most essential building blocks. Until now there were no such components for magnetic fields. Physicists at the University of Innsbruck and the ÖAW Institute of Quantum Optics and Quantum Information (IQOQI) are now changing that. They designed the first diode for magnetic fields and demonstrated its functionality in the laboratory.

“Our device makes possible to transfer the magnetic field from a first magnetic element - for example a magnet or a coil - to a second one. When roles are inverted and one tries to send magnetic field from the second to the first, no magnetic field is transferred," explains first author Jordi Prat Camps, who is now a researcher at the University of Sussex in England. Technically speaking, this means that the mutual inductances between the two sources, which are routinely assumed to be symmetric, can be made extremely asymmetric. The key element to obtain this result is the use of an electrical conductor that moves with constant velocity. “When the conductor is properly placed near to the magnetic elements and is moved at the right speed, the coupling between them becomes unidirectional, and a diode for magnetic fields is realized”, says Jordi Prat Camps.

Coupled magnetic elements are found in many key technologies like electric motors, transformers, magnetic memories or MRI machines. In all of them, magnetic elements are symmetrically coupled. “The availability of a new magnetic tool like a diode might thus open a bunch of new possibilities”, Gerhard Kirchmair points to the future. For example, the efficiency of wireless charging devices could be improved, since the energy can only flow from the charging station to the device and not in the other direction.

Original publication:

"Circumventing Magnetostatic Reciprocity: a Diode for Magnetic Fields"; J. Prat-Camps, P. Maurer, G. Kirchmair, and O. Romero-Isart; Phys. Rev. Lett.; 121, 213903
From: First diode for magnetic fields

I think I see what they're doing.
Attached Images
File Type: jpg 119375-53.jpg (9.1 KB, 85 views)
__________________
 

Last edited by bistander; 11-25-2018 at 07:09 AM. Reason: Added reference
Reply With Quote