View Single Post
 
Old 02-22-2012, 03:13 PM
evolvingape evolvingape is offline
Senior Member
 
Join Date: Dec 2011
Posts: 164
Water is an incompressible fluid. ( Liquid Phase )

Water Vapor is a compressible fluid. ( Gas Phase )

https://en.wikipedia.org/wiki/Properties_of_water

https://en.wikipedia.org/wiki/Supercritical_fluid

A supercritical fluid is any substance at a temperature and pressure above its critical point, where distinct liquid and gas phases do not exist.

https://en.wikipedia.org/wiki/Phase_transition

A phase transition is the transformation of a thermodynamic system from one phase or state of matter to another.

A phase of a thermodynamic system and the states of matter have uniform physical properties.

During a phase transition of a given medium certain properties of the medium change, often discontinuously, as a result of some external condition, such as temperature, pressure, and others. For example, a liquid may become gas upon heating to the boiling point, resulting in an abrupt change in volume. The measurement of the external conditions at which the transformation occurs is termed the phase transition point.

Phase transitions are common occurrences observed in nature and many engineering techniques exploit certain types of phase transition.

The term is most commonly used to describe transitions between solid, liquid and gaseous states of matter, in rare cases including plasma.

Critical points

In any system containing liquid and gaseous phases, there exists a special combination of pressure and temperature, known as the critical point, at which the transition between liquid and gas becomes a second-order transition.

Near the critical point, the fluid is sufficiently hot and compressed that the distinction between the liquid and gaseous phases is almost non-existent. This is associated with the phenomenon of critical opalescence, a milky appearance of the liquid due to density fluctuations at all possible wavelengths (including those of visible light).


Critical exponents and universality classes

Continuous phase transitions are easier to study than first-order transitions due to the absence of latent heat, and they have been discovered to have many interesting properties. The phenomena associated with continuous phase transitions are called critical phenomena, due to their association with critical points.

It turns out that continuous phase transitions can be characterized by parameters known as critical exponents. The most important one is perhaps the exponent describing the divergence of the thermal correlation length by approaching the transition. For instance, let us examine the behavior of the heat capacity near such a transition. We vary the temperature T of the system while keeping all the other thermodynamic variables fixed, and find that the transition occurs at some critical temperature Tc. When T is near Tc, the heat capacity C typically has a power law behaviour.

A similar behaviour, but with the exponent ν instead of α, applies for the correlation length.

The exponent ν is positive. This is different with α. Its actual value depends on the type of phase transition we are considering.

For -1 < α < 0, the heat capacity has a "kink" at the transition temperature. This is the behavior of liquid helium at the lambda transition from a normal state to the superfluid state, for which experiments have found α = -0.0130.003. At least one experiment was performed in the zero-gravity conditions of an orbiting satellite to minimize pressure differences in the sample. This experimental value of α agrees with theoretical predictions based on variational perturbation theory.

For 0 < α < 1, the heat capacity diverges at the transition temperature (though, since α < 1, the enthalpy stays finite). An example of such behavior is the 3-dimensional ferromagnetic phase transition. In the three-dimensional Ising model for uniaxial magnets, detailed theoretical studies have yielded the exponent α ∼ +0.110.

Some model systems do not obey a power-law behavior. For example, mean field theory predicts a finite discontinuity of the heat capacity at the transition temperature, and the two-dimensional Ising model has a logarithmic divergence. However, these systems are limiting cases and an exception to the rule.

Real phase transitions exhibit power-law behavior.

Several other critical exponents - β, γ, δ, ν, and η - are defined, examining the power law behavior of a measurable physical quantity near the phase transition. Exponents are related by scaling relations such as β = γ / (δ − 1), ν = γ / (2 − η). It can be shown that there are only two independent exponents, e.g. ν and η.

It is a remarkable fact that phase transitions arising in different systems often possess the same set of critical exponents. This phenomenon is known as universality. For example, the critical exponents at the liquid-gas critical point have been found to be independent of the chemical composition of the fluid. More amazingly, but understandable from above, they are an exact match for the critical exponents of the ferromagnetic phase transition in uniaxial magnets.

Such systems are said to be in the same universality class. Universality is a prediction of the renormalization group theory of phase transitions, which states that the thermodynamic properties of a system near a phase transition depend only on a small number of features, such as dimensionality and symmetry, and are insensitive to the underlying microscopic properties of the system. Again, the divergency of the correlation length is the essential point.

Critical slowing down and other phenomena

There are also other critical phenoma; e.g., besides static functions there is also critical dynamics. As a consequence, at a phase transition one may observe critical slowing down or speeding up. The large static universality classes of a continuous phase transition split into smaller dynamic universality classes. In addition to the critical exponents, there are also universal relations for certain static or dynamic functions of the magnetic fields and temperature differences from the critical value.

Percolation theory

Another phenomenon which shows phase transitions and critical exponents is percolation. The simplest example is perhaps percolation in a two dimensional square lattice. Sites are randomly occupied with probability p. For small values of p the occupied sites form only small clusters. At a certain threshold pc a giant cluster is formed and we have a second order phase transition. The behaviour of P∞ near pc is, P∞~(p-pc)β, where β is a critical exponent.

RM
Attached Images
File Type: jpg Phase Transition Diagram.jpg (14.7 KB, 1 views)
__________________
 

Last edited by evolvingape; 02-22-2012 at 03:41 PM.
Reply With Quote